# Module 0x1::u64

## Function max​

Return the larger of x and y

public fun max(x: u64, y: u64): u64

Implementation
public fun max(x: u64, y: u64): u64 {
std::macros::num_max!(x, y)
}


## Function min​

Return the smaller of x and y

public fun min(x: u64, y: u64): u64

Implementation
public fun min(x: u64, y: u64): u64 {
std::macros::num_min!(x, y)
}


## Function diff​

Return the absolute value of x - y

public fun diff(x: u64, y: u64): u64

Implementation
public fun diff(x: u64, y: u64): u64 {
std::macros::num_diff!(x, y)
}


## Function divide_and_round_up​

Calculate x / y, but round up the result.

public fun divide_and_round_up(x: u64, y: u64): u64

Implementation
public fun divide_and_round_up(x: u64, y: u64): u64 {
std::macros::num_divide_and_round_up!(x, y)
}


## Function pow​

Return the value of a base raised to a power

public fun pow(base: u64, exponent: u8): u64

Implementation
public fun pow(base: u64, exponent: u8): u64 {
std::macros::num_pow!(base, exponent)
}


## Function sqrt​

Get a nearest lower integer Square Root for x. Given that this function can only operate with integers, it is impossible to get perfect (or precise) integer square root for some numbers.

Example:

math::sqrt(9) => 3math::sqrt(8) => 2 // the nearest lower square root is 4;

In integer math, one of the possible ways to get results with more precision is to use higher values or temporarily multiply the value by some bigger number. Ideally if this is a square of 10 or 100.

Example:

math::sqrt(8) => 2;math::sqrt(8 * 10000) => 282;// now we can use this value as if it was 2.82;// but to get the actual result, this value needs// to be divided by 100 (because sqrt(10000)).math::sqrt(8 * 1000000) => 2828; // same as above, 2828 / 1000 (2.828)
public fun sqrt(x: u64): u64

Implementation
public fun sqrt(x: u64): u64 {
std::macros::num_sqrt!<u64, u128>(x, 64)
}